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Wigner trajectory characteristics in phase space and field
theory
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† Department of Physics, University of Miami, Box 248046, Coral Gables, FL 33124, USA
‡ High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815, USA

Received 26 October 1998

Abstract. Exact characteristic trajectories are specified for the time-propagating Wigner phase-
space distribution function. They are especially simple—indeed, classical—for the quantized
simple harmonic oscillator, which serves as the underpinning of the field theoretic Wigner functional
formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field
phase space. Applications to duality transformations in field theory are discussed.

An autonomous formulation of quantum mechanics, different from conventional Hilbert space
or path integral quantization, is based on Wigner’s phase-space distribution function (WF),
which is a special representation of the density matrix [1]. In this formulation, known as
deformation quantization [2], phase-spacec-number functions are multiplied through the
crucial noncommutative?-product [3]. The empowering principle underlying this quantization
is its operational isomorphism [2] to the conventional Heisenberg operator algebra of quantum
mechanics.

Here, we employ the?-unitary evolution operator, a ‘?-exponential’, to specify the
time propagation of Wigner phase-space distribution functions. The answer is known to be
remarkably simple for the harmonic oscillator WF, and consists of classical rotation in phase
space for the full quantum system. It thus serves as the underpinning of the generalization to
field theory we consider, in which the dynamics is specified through the evolution ofc-number
distributions on field phase space.

Wigner functions are defined by

f (x, p) = 1

2π

∫
dy ψ∗

(
x − h̄

2
y

)
e−iypψ

(
x +

h̄

2
y

)
. (1)

Even though they amount to spatial auto-correlation functions of Schrödinger wavefunctions
ψ , they can be determined without reference to such wavefunctions, in a logically autonomous
structure. For instance, when the wavefunction is an energy (E) eigenfunction, the
corresponding WF is time-independent and satisfies the two-sided energy?-genvalue equations
[4,5],

H ? f = f ? H = Ef (2)
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where? is the essentially unique associative deformation of ordinary products on phase space,

? ≡ e
ih̄
2 (
←
∂ x
→
∂ p−

←
∂ p
→
∂ x) (3)

as defined by Groenewold [3], and developed in [2]. In practice, it may be evaluated through

translations of function arguments,f (x, p) ? g(x, p) = f (x + ih̄
2

→
∂ p, p − ih̄

2

→
∂ x)g(x, p), to

produce pseudodifferential equations.
These WFs are real. They are bounded by the Schwarz inequality [8] to−2/h 6 f 6 2/h.

They can go negative, and, indeed, they do for all but Gaussian configurations, so they
are not probability distributions [1]. However, upon integration overx or p, they yield
marginal probability densities inp- andx-space, respectively. They can also be shown to
be orthonormal [4, 5]. Unlike in Hilbert space quantum mechanics, naive superposition of
solutions of the above does not hold, because of Baker’s [8] fundamental nonlinear projection
conditionf ? f = f/h.

Time-dependence for WFs was succinctly specified by Moyal through the commutator
bracket [6] bearing his name,

ih̄
∂

∂t
f (x, p; t) = H ? f (x, p; t)− f (x, p; t) ? H. (4)

This turns out to be the essentially unique associative generalization of the Poisson bracket
[7], to which it reduces as ¯h → 0, yielding Liouville’s theorem of classical mechanics,
∂tf + {f,H } = 0.

For the evolution of the fundamental phase-space variablesx andp, time evolution is
simply the convective part of Moyal’s equation, so the apparent sign is reversed, while the
Moyal bracket actually reduces to the Poisson bracket. That is, the ¯h-dependence drops out,
and these variables, in fact, evolve simply by theclassicalHamilton equations of motion,
ẋ = ∂pH , ṗ = −∂xH .

What is the time-evolution of a WF like? This is the first question we address. Relying on
the isomorphism to operator algebras of [2] indicated, one may solve for the time-trajectories
of the WF, which turn out to be notably simple. By virtue of the?-unitary evolution operator,
a ‘?-exponential’ [2],

U?(x, p; t) = eitH/h̄
? ≡ 1 + (it/h̄)H(x, p) +

(it/h̄)2

2!
H ? H +

(it/h̄)3

3!
H ? H ? H + · · · (5)

the time-evolved Wigner function is obtainable formally in terms of the Wigner function at
t = 0 through associative combinatoric operations completely analogous to the conventional
formulation of quantum mechanics of operators in Hilbert space. Specifically,

f (x, p; t) = U−1
? (x, p; t) ? f (x, p; 0) ? U?(x, p; t). (6)

As mentioned, the dynamical variables evolve classically,

dx

dt
= x ? H −H ? x

ih̄
= ∂pH (7)

and
dp

dt
= p ? H −H ? p

ih̄
= −∂xH. (8)

Consequently, by associativity, the quantum evolution,

x(t) = U? ? x ? U−1
? (9)

p(t) = U? ? p ? U−1
? (10)

turns out to flow alongclassicaltrajectories.
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What can one say about this formal time-evolution expression? Any WF in phase space,
upon Fourier transformation resolves to

f (x, p) =
∫

da db f̃ (a, b)eiaxeibp. (11)

However, note that exponentials of individual functions ofx andp are also?-exponentials
of the same functions, or?-versions of these functions, since the?-product trivializes in the
absence of a conjugate variable, so that

eiaxeibp = eiax
? eibp

? . (12)

Moreover, this is proportional to a?-product, since

eiax
? ? eibp

? = e
ia(x+ih̄

→
∂ p/2)

? eibp
? = eiax

? eibp
? e−ih̄ab/2. (13)

Consequently, any Wigner function can be written as

f (x, p) =
∫

da db f̃ (a, b)eih̄ab/2eiax
? ? eibp

? . (14)

It follows then, that, by insertion ofU? ? U−1
? pairs at every?-multiplication, in general,

f (x, p; t) =
∫

da db f̃ (a, b)eih̄ab/2eiaU−1
? ?x?U?

? ? eibU−1
? ?p?U?

?

=
∫

da db f̃ (a, b)eih̄ab/2eiax(−t)
? ? eibp(−t)

? . (15)

Unfortunately, in general, the above steps cannot be simply reversed to yield an integrand
of the formf̃ (a, b)eiax(−t)eibp(−t). But, in some fortuitous circumstances, they can, and in this
case the evolution of the Wigner function reduces to merely backward evolution of its arguments
x, p along classical trajectories, while its functional form itself remains unchanged:

f (x, p; t) = f (x(−t), p(−t); 0). (16)

To illustrate this, consider the simple linear harmonic oscillator (takingm = 1,ω = 1),

H = p2 + x2

2
= x − ip√

2
?
x + ip√

2
+
h̄

2
. (17)

It is easily seen that

ih̄ẋ = x ? H −H ? x = ih̄p ih̄ṗ = p ? H −H ? p = −ih̄x (18)

and thus the canonical variables indeed evolve classically:

X ≡ x(t) = U? ? x ? U−1
? = x cost + p sint

P ≡ p(t) = U? ? p ? U−1
? = p cost − x sint.

(19)

This checks against the?-exponential for the SHO, [2], eitH/h̄
? = 1

cos(t/2) exp(2i tan(t/2)H/h̄).
Now, recall the degenerate case of the Baker–Campbell–Hausdorff combinatoric identity

for any two operators withconstantcommutator with respect to any associative multiplication,
thus for any phase-space functionsξ andη under?-multiplication. If

ξ ? η − η ? ξ = c (20)

then,

eξ? ? eη? = eξ+η
? ec/2. (21)
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Application of this identity as well as (13) and (12) directly yields

eiax(−t)
? ? eibp(−t)

? eih̄ab/2 = ei(a cost+b sint)x+i(b cost−a sint)p
?

= ei(a cost+b sint)x
? ? ei(b cost−a sint)p

? eih̄(a cost+b sint)(b cost−a sint)/2

= ei(a cost+b sint)x
? ei(b cost−a sint)p

?

= ei(a cost+b sint)xei(b cost−a sint)p. (22)

Consequently,

f (x, p; t) =
∫

da db f̃ (a, b)eiax(−t)eibp(−t) (23)

and hence the reverse convective flow (16) obtains.
The result for the SHO is the preservation of the functional form of the Wigner distribution

function along classical phase-space trajectories:

f (x, p; t) = f (x cost − p sint, p cost + x sint; 0). (24)

What this means is thatanyWigner distribution rotates uniformly on the phase plane around
the origin, essentially classically, even though it provides a complete quantum mechanical
description. Note how, in general, this result is deprived of importance, or, at the very least,
simplicity, upon integration inx (orp) to yield probability densities: the rotation induces shape
variations of the oscillating probability density profile. Only if, as is the case for coherent
states [10], a Wigner function configuration has an additional axialx–p symmetry around its
owncentre, will it possess an invariant profile upon this rotation, and hence a shape-invariant
oscillating probability density.

The result (24), of course, is not new. It was clearly recognized by Wigner [11]. It follows
directly from (4) for (17) that

(∂t + p∂x − x∂p)f (x, p; t) = 0. (25)

The characteristics of this partial differential equation correspond to the above uniform rotation
in phase space, so it is easily seen to be solved by (24). The result was given explicitly in [3]
and also [9], following different derivations. Lesche [12], has also reached this result in an
elegant fifth derivation, by noting that for quadratic Hamiltonians such as this one, the linear
rotation of the dynamical variables (19) leaves the symplectic quadratic form invariant, and
thus the?-product invariant. That is, the gradients in the?-product may also be taken to be with
respect to the time-evolved canonical variables (19),X andP ; hence, after insertingU? ?U−1

?

in the?-functional form off , the?-products may be taken to be with respect toX andP , and
the functional form off is preserved, (16). This only holds for quadratic Hamiltonians.

Dirac’s interaction representation may then be based on this property, for a general
Hamiltonian consisting of a basic SHO part,H0 = (p2+x2)/2, supplemented by an interaction
part,

H = H0 +HI . (26)

Now, upon defining

w ≡ eitH0/h̄
? ? f ? e−itH0/h̄

? (27)

it follows that Moyal’s evolution equation reads,

ih̄
∂

∂t
w(x, p; t) = HI ? w(x, p; t)− w(x, p; t) ?HI (28)

whereHI ≡ eitH0/h̄
? ? HI ? e−itH0/h̄

? . ExpressingHI as a?-function leads to a simplification.
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In terms of the convective variables (19),X,P ,HI (x, p) = HI(X, P ), andw(x, p; t) =
f (X, P ; t), while ? may refer to these convective variables as well. Finally, then,

ih̄
∂

∂t
f (X, P ; t) = HI(X, P ) ? f (X, P ; t)− f (X, P ; t) ? HI (X, P ). (29)

In the uniformly rotating frame of the convective variables, the WF time-evolves according
to the interaction Hamiltonian—while, for vanishing interaction Hamiltonian,f (X, P ; t) is
constant and yields (24). Below, in generalizing to field theory, this provides the basis of the
interaction picture of perturbation theory, where the basis canonical fields evolve classically
as above†.

To produce Wigner functionals in scalar field theory, one may start from the standard,
noncovariant, formulation of field theory in Hilbert space, in terms of Schrödinger
wavefunctionals.

For a free-field Hamiltonian, the energy eigenfunctionals are Gaussian in form. For
instance, without loss of generality, in two dimensions (x is a spatial coordinate, andt = 0 in
all fields), the ground state functional is

9[φ] = exp

(
− 1

2h̄

∫
dx φ(x)

√
m2 −∇2

x φ(x)

)
. (30)

Boundary conditions are assumed such that the
√
m2 −∇2

x kernel in the exponent is naively
self-adjoint. ‘Integrating by parts’ one of the

√
m2 −∇2

z kernels, functional derivation
δφ(x)/δφ(z) = δ(z− x) then leads to

h̄
δ

δφ(z)
9[φ] = −

(√
m2 −∇2

z φ(z)

)
9[φ] (31)

h̄2 δ2

δφ(w)δφ(z)
9[φ] =

(√
m2 −∇2

wφ(w)

)
×
(√

m2 −∇2
z φ(z)

)
9[φ] − h̄

√
m2 −∇2

z δ(w − z)9[φ]. (32)

Note that the divergent zero-point energy density,

E0 = h̄

2
lim
w→z

√
m2 −∇2

z δ(w − z) (33)

may be handled rigorously usingζ -function regularization.
Leaving this zero-point energy present, leads to the standard energy eigenvalue equation,

again through integration by parts,

1

2

∫
dz

(
−h̄2 δ2

δφ(z)2
+ φ(z)(m2 −∇2

z )φ(z)

)
9[φ] = E0 9[φ]. (34)

A natural adaptation to the corresponding Wigner functional is the following. For a
functional measure [dη/2π ] =∏x dη(x)/2π , one obtains

W [φ, π ] =
∫ [

dη

2π

]
9∗

[
φ − h̄

2
η

]
e−i

∫
dx η(x)π(x)9

[
φ +

h̄

2
η

]
(35)

whereπ(x) is to be understood as the local field variable canonically conjugate toφ(x).
However, in this expression, bothφ andπ areclassicalvariables, not operator-valued fields,
in full analogy to the phase-space quantum mechanics already discussed.

† [13] discusses field theoretic interaction representations in phase space, which do not appear coincident with the
present one.
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For the Gaussian ground state wavefunctional, this evaluates to

W [φ, π ] =
∫ [

dη

2π

]
exp

(
− 1

2h̄

∫
dx

(
φ(x)− h̄

2
η(x)

)√
m2 −∇2

x

(
φ(x)− h̄

2
η(x)

))
×e−i

∫
dx η(x)π(x) exp

(
− 1

2h̄

∫
dx

(
φ(x) +

h̄

2
η(x)

)
×
√
m2 −∇2

x

(
φ(x) +

h̄

2
η(x)

))
= exp

(
−1

h̄

∫
dx φ(x)

√
m2 −∇2

xφ(x)

)
×
(∫ [

dη

2π

]
e−i

∫
dx η(x)π(x) exp

(
− h̄

4

∫
dx η(x)

√
m2 −∇2

xη(x)

))
. (36)

So

W [φ, π ] = N exp

(
− 1

h̄

∫
dx

((
φ(x)

√
m2 −∇2

xφ(x)

)
+

(
π(x)

(√
m2 −∇2

x

)−1

π(x)

)))
(37)

whereN is a normalization factor. It is the expected collection of harmonic oscillators.
This Wigner functional is, of course [5], an energy?-genfunctional, also checked directly.

For

H0[φ, π ] ≡ 1
2

∫
dx (π(x)2 + φ(x)(m2 −∇2

x )φ(x)) (38)

and the inevitable generalization

? ≡ exp

(
ih̄

2

∫
dx

( ←
δ

δφ(x)

→
δ

δπ(x)
−

←
δ

δπ(x)

→
δ

δφ(x)

))
(39)

it follows that

H0 ? W =
∫

dx

2

((
π(x)− 1

2
ih̄

δ

δφ(x)

)2

+

(
φ(x) +

1

2
ih̄

δ

δπ(x)

)
(m2 −∇2

x )

(
φ(x) +

1

2
ih̄

δ

δπ(x)

))
W [φ, π ]

=
∫

dx

2

(
π(x)2 − 1

4
h̄2 δ

δπ(x)
(m2 −∇2

x )
δ

δπ(x)

+φ(x)(m2 −∇2
x )φ(x)−

1

4
h̄2 δ2

δφ(x)2

)
W [φ, π ]

= E0W [φ, π ]. (40)

This is indeed the ground state Wigner energy-?-genfunctional. The?-genvalue is again the
zero-point energy, which could have been removed by point-splitting the energy density, as
indicated earlier. There does not seem to be a simple point-splitting procedure that regularizes
the?-product as defined above and also preserves associativity.

As in the case of the SHO discussed above, free-field time-evolution for Wigner functionals
is also effected by Dirac delta functionals whose support lies on the classical field time evolution
equations. Fields evolve according to the equations,

−ih̄∂tφ = H ? φ − φ ? H − ih̄∂tπ = H ? π − π ? H. (41)
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ForH0, these equations are the classical evolution equations for free fields,

∂tφ(x, t) = π(x, t) ∂tπ(x, t) = −(m2 −∇2
x )φ(x, t). (42)

Formally, the solutions are represented as

φ(x, t) = cos

(
t

√
m2 −∇2

x

)
φ(x, 0) + sin

(
t

√
m2 −∇2

x

)
1√

m2 −∇2
x

π(x, 0) (43)

π(x, t) = − sin

(
t

√
m2 −∇2

x

)√
m2 −∇2

xφ(x, 0) + cos

(
t

√
m2 −∇2

x

)
π(x, 0). (44)

From these, it follows by the functional chain rule that∫
dx

(
π(x, 0)

δ

δφ(x, 0)
− ((m2 −∇2

x )φ(x, 0))
δ

δπ(x, 0)

)
=
∫

dx

(
π(x, t)

δ

δφ(x, t)
− ((m2 −∇2

x )φ(x, t))
δ

δπ(x, t)

)
(45)

for any timet .
Consider the free-field Moyal evolution equation for a generic (not necessarily energy-?-

genfunctional) WF, corresponding to (25),

∂tW = −
∫

dx

(
π(x)

δ

δφ(x)
− φ(x)(m2 −∇2

x )
δ

δπ(x)

)
W. (46)

The solution is

W [φ, π; t ] = W [φ(−t), π(−t); 0]. (47)

Adapting the method of characteristics for first-order equations to a functional context,
one may simply check this solution again using the chain rule for functional derivatives, and
the field equationsevolved backwards in timeas specified:

∂tW [φ, π; t ] = ∂tW [φ(−t), π(−t); 0]

=
∫

dx

(
∂tφ(x,−t) δ

δφ(x,−t) + ∂tπ(x,−t) δ

δπ(x,−t)
)
W [φ(−t), π(−t); 0]

=
∫

dx

(
(−π(x,−t)) δ

δφ(x,−t) + ((m2 −∇2
x )φ(x,−t))

δ

δπ(x,−t)
)

×W [φ(−t), π(−t); 0]

=
∫

dx

(
(−π(x,−t)) δ

δφ(x,−t) + ((m2 −∇2
x )φ(x,−t))

δ

δπ(x,−t)
)

×W [φ, π; t ]
= −

∫
dx

(
π(x)

δ

δφ(x)
− (m2 −∇2

x )φ(x)
δ

δπ(x)

)
W [φ, π; t ]. (48)

The quantum Wigner functional for free fields time-evolves along classical field configurations.
In complete analogy to the interaction representation for single particle quantum mechanics,
(29), the perturbative series in the interaction Hamiltonian (written as a?-function of fields) is
then defined in terms of convective (time-evolved free field) variables8,5:

ih̄
∂

∂t
W [8,5; t ] = HI [8,5] ? W [8,5; t ] −W [8,5; t ] ? HI [8,5]. (49)

In [5], a transformation functionT was introduced to accommodate arbitrary canonical
transformations induced by a generating functionF in quantum mechanics, following Dirac.
The WF in terms of the canonically transformed variables is obtained by convolving with this
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transformation function. In complete analogy, in scalar field theory, cf [15], given a canonical
transformation from field variablesφ, π to variablesϕ,$ effected by a generating functional
F [φ, ϕ], one may deduce that the WF in terms of the canonically transformed field variables
is

W [φ, π ] =
∫ [

dϕ d$

2π

]
T [φ, π;ϕ,$ ]W[ϕ,$ ] (50)

where

T [φ, π;ϕ,$ ] =
∫ [

dη dρ

2π

]
exp i

(
F

[
φ +

1

2
η, ϕ +

1

2
ρ

]
− iF ∗

[
φ − 1

2
η, ϕ − 1

2
ρ

]
+
∫

dx ($(x)ρ(x)− π(x)η(x))
)
. (51)

For example, the generating functional for free field duality between a two-dimensional
space-time scalarϕ and a pseudoscalarφ is

F [φ, ϕ] =
∫

dx φ∂xϕ (52)

so it yields the classical canonical transformations

π = δ

δφ
F = ∂xϕ $ = − δ

δϕ
F = ∂xφ. (53)

After some computation, it follows that

T [φ, π;ϕ,$ ] = [2π ]δ[∂xϕ − π ]δ[$ − ∂xφ]. (54)

The ensuing relation between the respective dual Wigner functionals is then quite simple:

W [φ, π ] =W
[ ∫ x

π, ∂xφ

]
. (55)

A less exceptional example is the canonical transformation from the chiralσ -model in
two dimensions to its dual counterpart, [14,15] generated by

F =
∫

dx φiJ i(ϕ) (56)

where

J i [ϕ] =
√

1− ϕ2
↔
∂x ϕ

i + εijkϕj ∂xϕ
k (57)

is the spatial component of the right(V + A) current. The resulting classical relations are
of course more complicated than for the free field duality above [15]. For example, the
nonlinear relation between field-conjugate and dual field isπi = ∂

∂φ
F = J i [ϕ]. Even so, the

resulting quantum transformation functional is considerably more complicated beyond this
nonlinearity. Only one functional integration (overη) is trivially carried out in the previous
general expression forT in terms ofF , leading to

T =
∫

[dρ]δ[πi − 1
2J

i(ϕ + 1
2ρ)− 1

2J
i(ϕ − 1

2ρ)]

× exp

(
i
∫

dx φi(J i(ϕ + 1
2ρ)− J i(ϕ − 1

2ρ))

)
exp

(
i
∫

dx $ρ

)
. (58)

The delta-functional appearing explicitly here does not enforce the aforementioned
classical constraint, but rather a ‘quantum arithmetically-averaged’ form of it. The other
classical constraint, involving$ , is obliterated by the remaining functional integral overρ,
and emerges clearly only in the weak-ϕ-field limit, whereJ i(ϕ + 1

2ρ)− J i(ϕ − 1
2ρ) ' ∂xρi .

This is more typical of quantum effects in field theory.
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